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Abstract

T he reliable fuzzy contwol with guaranteed cost for T-S fuzzy systems with actuator failure is proposed in this paper. The

cost function is a quadratic function with failure input. When the initial state of such systems is known, a design method of the reliable

fuzzy contwoller with reliable guaranteed cost is presented, and the formula of the guaranteed cost is established. When the initial state of

such systems is unknown but belongs to a know n bounded clbsed domain, a notion of the reliable domain guaranteed cost (RDGC) for such

systems is proposed. For two classes of initial state domain, polygon domain and ellipsoid domain, some design methods for reliable fuzzy

controllers with the RDGC are provided. The efficiency of our design methods is finally verified by numerical design and simulation on the

Rossler chaotic system.

Keywords:

In view of fuzzy set and fuzzy inference, the
complex nonlinear systems can be efficiently repre-
sented by T-S fuzzy systems "3, and the stability
analy sis and controller design methods for T-S fuzzy
systems have been studied extensively! >~ .

In the area of guaranteed cost control, the re-
search of quadratic cost index for uncertain systems is
one of the important aspects. Since the cost value for
uncertain systems cannot be determined precisely,
Chang and Peng ¢ proposed the problem of fixed up-
per bound of quadratic cost for such systems, i.e. the
guaranteed cost control problem. Consequently, some
relative researches have been reportedHONu'”’ o
Jadbabaie et al.'¥ studied the design method of guar-
anteed cost controller for continuous fuzzy systems
without uncertainties, where the initial state is sup-
posed to be random variable. However, research on
guaranteed cost control for T-S fuzzy systems with
actuator failure by fuzzy modeling approach have not
been reported.

The design purpose of reliable controller is to
guarantee that the resulting closed-loop system is tol-
erant with actuator failure and can retain some useful

sy stem atic properties[13~l6] . Recently, Yang et
al.""" proposed a general model for actuator failure

and studied the reliable guaranteed cost control prob-

T-S fuzzy systems. reliable fuzzy control reliable domain guaranteed cost. actuator failures

lem for uncertain nonlinear systems, but its design
method is not easy to realize. Jia et al."™ discussed
the reliable dy namic com pensator design method for
uncertain time varying systems with sensor failure,
which is operable.

The following notations will be used in the pa-
per. For given symmetric matrices X and ¥, XY
(or X<<Y) denotes Y— X>0 (or Y—X=0), i.e.
symmetric positive definite matrix (or positive semi-
definite matrix ), X' means the transpose of matrix
X, [ is areal unitary matrix with appropriate dimen-

sion, diag{ Xi» X2 - Xj} is a diagonal block ma-
X

trix, and R™ " is the set of all real matrixces with

m X n dimensions.

1 Problem formulation

Considering the T-S fuzzy systems with actuator
failures,
R': If z1 (1) is Mit, and zg (1) is Mig
then
x (O=Ax(O+Bu' (), i=12 = r, (D
where R* (i=1, 2, -, ) denotes the i-th rule of
fuzzy uncertain systems (1); z1 (), -5 zg (¢) are
precise variables of such fuzzy rules which are usual-
ly state functions; M (i=1,2, == r; j= 1, 2, -
g) are fuzzy linguistic sets; x (1) € R" and " (1) €

* Supported by the National Natural Science Foundation of China (G rant Nos. 60024301 60174007)

%% To whom correspondence should be addressed. E-mail; xchjia@sxu. edu. cn



1110

Progress in Natural Science  Vol. 14 No.12 2004

R " are the state vector and the actual input of the
systems (1), respectively; A; and B; are real con-
stant matrices with appropriate dimensions (i=1, 2,
-5 7). The initial state for fuzzy systems (1) is de-
noted by x(0). u,~F(t) is an actual control input and
usually an uncertain function of ideal actuator’ s out-
put u;(¢) (i=1,2, -, r), which is represented by
the following actuator failure model
wi (0 = @ (0 + $Cuds  Fud) < dou; (1),
i=1,2 - m, 2
where § (1) is the unknown Lebesgue measurable
function about u;s @; and o are known positive con-
stant numbers with @,=a;=0. Let a=diag{ a;, ay,
oy Gty 0= diag{ @y Gy o Gty u' (O=[ uy,
ey ufn] YodGo = % Cu)s v G Cun)"s then
Eq. (2) can be rewritten as
u (1) = au(O)+ Pult),
) < u' (OHCur),
a= o = 0. 3

When o;=1 and ¢;=0, (3) corresponds to the
normal case (u?(t): u; (1)). When a;= d;, it is
the complete failure case of the i-th actuator. When
0< & @ =<1, it is the partial failure case.

Let z=1[z1 z2 =5 zg] ', then the defuzzied
output of the fuzzy system (1) is represented as

x ()= D hi(z ()] Ax(t)+ B; Cau(t)
i=1

+ Wu )], @
g .
w here (Ul(Z(l)): H I;(Z](t))a l:19 29 ttre Ty
=1
(2 (1))
hi(z (t)): r('U z . l:L 29 ERRCI 40}

Dz ()

. =1
I'(z;(¢)) is the membership function of z; (¢) in
M(lzly 29 “tte I’), and hl(z (l)) (1:11 29 sty I’)
is the normmalized membership functions of system
(D), which satisfy the following properties:

hl<t)>()7 ZZI,Z,,I”, Zh;(t):l.

pay

5

For simplicity, denote hi (z (¢)) by hi (¢) (or
hi) (i=1,2, -5 r) in this paper.

For the fuzzy system (1), the fuzzy controller
based on the PDC technique is chosen to be

C':. If z1(#)is My and -+~ and zg (1) is Mig;

then

ult)=Fx(t)y, i=12, - r 6)
then the global fuzzy controller is a nonlinear con-
troller, i.e.

u(t) = > hi () Fx(t). 7
i=1

The resulting closed-loop system is

x ()=, 2 hihj(Ai -+ BiaF)x (¢)

i=1 j=1

+2hiBi¢{2h,ij(t)] C®

The cost function for fuzzy systems (1) is chosen
as a quadratic cost function with failure input, i e.

foo
J= JO [x' (ORx(O+ G ¢ Ry ()] dt
9

where R and R> are given symmetric positive defi-

nite matrices, and R2 is a diagonal matrix.

The problems under consideration in the paper
are formulated as follows:

(ID Given the known initial state for fuzzy sys-
tems (1), the design purpose of fuzzy control law (6)
is to guarantee that the closed-loop system (8) is ro-
bustly quadratic stable and the cost function (9) of
system (8) satisfies J<Jo for any admissible actuator
failure (2), where Jy is a positive constant number.
If such conditions hold, then the controller (6) is re-
ferred to as a reliable fuzzy controller with a reliable
guaranteed cost Jo for fuzzy systems (1).

(I1) When the initial state of fuzzy systems (1)
is unknown but belongs to a bounded closed domain
Q (called the initial state domain), the design pur-
pose of the fuzzy control law (6) is to guarantee that
the closed-loop system (8) is robustly quadratic stable
for any admissible actuator failure (2), and the cost
function (9) of system (8) satisfies J<<J () for any
admissible actuator failure (2) and any admissible ini-
tial state x (0) € & where J (1) is a positive con-
stant number. If such conditions are satisfied, the
controller (6) is called a reliable fuzzy controller with
a reliable domain guaranteed cost C(abbreviated to
RDGC) J(D) for fuzzy systems (1) with the initial
domain (L

m
Lemma 1” . Given some real vectors yER
(i=1,2, -5 s), and a symmetric positive definite
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m

matrix M € R™"
s T s L) T
then [Zl p,-yJ M{Zl vaJ < :21 piyiMyi.

2 Design method of reliable fuzzy controller
and reliable guaranteed cost

L If 2 pi=1 and 0<< p;<_1,
i=1

In this section, we assume that the initial state
of fuzzy system (1) is known. A design method for
reliable fuzzy controller, and a formula of reliable
guaranteed cost are presented. Meanwhile, we will
establish an optimal technique to decrease the conser-
vatism of reliable guaranteed cost.

Theorem 1. Given fuzzy systems (1), actuator
failure model (2) and quadratic cost function (9), if
there exists a feasible solution to matrix inequalities
(10) ~ (12): a symmetric positive definite matrix

ZGRnxn, matrices Q; € R (i=1,2
Y; € R (is j=1,2, -, ), positive real numbers
€ (i=1,2 -+ 7) and & where ¥ji= ¥ (i 7)),
then the controller (6) with gain matrices Fi =
0Z '"(i=1,2 -5 r) is a reliable fuzzy controller
with a guaranteed cost J (x (0))= x' (0 YZ 'x (0)
for fuzzy systems (1).
[ (ZA! + Q1B+ (A4:Z + BiaQ)
+ BB+ 5 '0id° Q)
+[ZR\Z+ 0, (d"Rya+ dR,d
+ea' Roate 'dR Q] < Vi
i=12 ao
[ (ZA] + QuB] + ZA| + QuB))
+ (A,Z+ BiaQ, + A,Z+ BaQ)+ <BB,
T BB T QF O+ ¢ Qi Q)
+[2ZR\Z+ Q] (d"Rya+ e Ry
+ @Rz € "dR2) Qi + Q) (@ Raa
+ea' Rya+ dRyd+ & 'dR,d) Q]

mXn
ey 1),

<vitvY, i<j an
Y = [ Y] o< 0. 12)

Proof. Let P=Z ', Fi=0Z '(i=1,2, -

r). Choosing V(¢)= x (OPx(t) as a Lyapunov
function candidate for system (8), the time derivative
of V(t) along the solution trajectories is given by

V(O =x"(OPc )+ x"(OPx ()
= DD hihx" ([ (A;+ BaF)" P

=1 j=1

+ P(A;+ BiaF;)] x(¢)

-+ ZhiZXT(t)PB,‘ ‘)‘[Zthjx(Z)] .
i—1 =1

In view of Lemma 1, we have

Zh,-zx"‘ (t)PB; {jzr;h_,-l?,x(t)]
< ghi[s,x“( t)PB:BPx (1)
+€,~1¢T[j2hjlfjx(t)] {jzr;hjﬂx(t)]]
< Zhi[xT<z)eiPBiB,TPx<z>
+ €i1[2th}x(t)] Ta‘z[jzr;hjﬂx(t)]]
< [Zr;huc"‘(z)[ <iPBiB; P
+€,—12thjT-a‘2E] x(1)

= 22 hjhij(l [ S,'PBZ‘B;‘FP

=1 =1
+ e, FdF] x (0.
Hence, we obtain the following inequality
V(<202 hix" (O] (A4i + BiaF)' P

i—1 j—1

+ P(A;+ BioF;)+ <PB.B.P

+ & F;F] x (o). (13)
On the other hand, the integral function in cost func-
tion (9) can be rewritten as

x (ORix O+ ' ()" R2Cu" (1))
=[x"(ORx(1)
+ Cau(t)+ Wu))" Ry Cau (1) + Hu))

= xT(t)RlmerxT(t)[Z hiFJ "a"Roa
°{_§r;h,~FJx(t)
+2[2hiﬂx(z)] "a'R, {2 h_,ij(t)]
+ st[IZthjx(t)] R> {2 th,«x(m] :

(14)
By (3) and Lemma 1, the second, third and fourth
terms in the right of Eq. (14) can be dealt with as

{ 2 h,-FJ T&TRsz{ Z h,-FJ
i=1 i=1

< D hiF " RyaF,
i=1
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(H[Zr;h,F,x(t)] R> {2h,ﬂx<t>]
= <
< {12 hfF_/x<t>] TdRza{er;thx(tﬂ
< Zhix"‘<z>ﬁi‘ezR2aFix<t>,
2{2 hiF,-x(t)] "R, ‘{]Zr;thjx(t)]
= Zghng(t)F,«T&TRz J,[;] thjx(t)]

< Zh,{ameFTaTRwEx(t)
i=1

i

+e ! ‘H[]Zr;hjf}x(tﬂ R> {jzrgh,ﬂx(t)]}

< 2 Z hih_}XT ([ ’eF}‘&T RooF;

=1 j=I
+2 ' FjaR, dF}] x (1),
and then we obtain

XORx(O)+ W DR Wb (1))

< xT(t)[RHr ZhiFl;aTR2an:|x(f)
i—1

+ 20 2 hih (O] <Fia" RyaF;
1

i=1 j=

+ & 'Fj Ry o] x (1)

+ Dk () FlaRacFix (1)
i=1

= D 2 hihix" (O R+ Fl (&' Roa
=1 j=1
+ea' Rya+ dRyd)F;
+’{1FJ»T0¢R20(E] x (1),
By the above inequalities, we conclude that
V() +{x"(ORx )+ " ()" Ry u" (1))

< D" (O (A + BiaF)" P
i=1
+ P(A; + BaF))+ «PBB,P+ ¢, F,d Fj
+[ R —FF;F (¢ Rya+ea Rra+ dR20) Fi
+7€71F1;(1AR2(1F;] bx (1)
-+ Z Zh,‘hij(l){[ (Aj+Bj?xF‘j +Aj

i=1 <
+ BoF)" P+ P(A; + BioF;+ A;+ BjoF;)
+ &PB:B;P+ <PBB; P
+ STIFJ-TaiFj—l— S;IF%(QF:']
+[2R + F} (" Rya+ e a"Rya+ dR, ) F;
+ F; (@"Rya+ ea" Rya+ dRyd)F

& 'FaRydF;+¢ ' FidRyoFy] }x (). (15)
Premultiply and postmultiply (10) and (11) by P,
we can derive from (12) and (15) that

V(O+H{x"(ORx(O+ " ()" Ra(u" (1))}

hix|| PY. P PY 1P| | hix
< : : " : << o0
hx|| PY P PY,.P| | h.x

(16)

holds for any nonzero vector x (1) € R " and any ad-
missible actuator failure (2). Therefore, the closed-
loop fuzzy system (8) is robustly quadratic stable.

From (16), we have { x' (t) Rix (¢t)+

" "Ry (U (1)) <<— ¥V (¢). Integrating the
above inequality from 0+ ©°in both sides simultane-
ously, and noting that system (8) is robustly
quadratic stable, we can obtain J<X ¥ (0)=x"(0)
Z 'x (0) = Jo. This completes the proof of

Theorem 1.

When fuzzy system (1) is failure-free, i.e. a=
. @=0, let &>0" in (10) and (11), we can ob-
tain the result which accords with the case that fuzzy
system (1) is not with actuator failures.

In Theorem 1, the matrix inequalities (10) and
(11) with respect to variables Z, @, (i=1,2, - r),
& (i=1,2, -, r) and € are not LMIs, which cannot
be solved directly by LMI approach. Let R(&)=
@' Ryotea Rya+ dRyd+ & 'dRyd. In order to
solve the matrix inequalities (10) ~ (12) efficiently,
we introduce a minimal procedure for R (8) with
variable €; min{trace(R (¢)).€>0}, and obtain the
constant number €, then we can get R (¢) by & and
briefly denote it by R. Consequently, the matrix in-

equalities (10) and (11) can be transformed into
some LM Is.

By Schur complementary principle, inequalities
(10) are equivalent to the follow ing LM Ts,

E: Qi QR ZR
a@i —=&l 0 0 <0
RO 0 — R 0
R1Z 0 0 — Ri
i — 19 27 M) I", (17)

where By =[(ZA, + QB! )+ (A, Z+ BiaQ:)+
SBB.— Yil. i=1,2, - r.

In the same way, inequalities (11) are equiva-
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lent to the following LM Is

S, Qd 0Qd ZR  OR OR)
i —al 0 0 0 0
@ 0 —gl 0 0 0|_,
RZ 0 0 —05R 0 0
RO 0 0 0 —R 0
LRQ © 0 0 0 —R
i< j, as)
w here
S; =ZA, + QuB; + ZA; + QaB,
+ AZ+ BeQ;+ A, Z+ BjaQ,
+ BB, + <BB; — Y; — Y. i< j.

In sum, the design procedure of the reliable
fuzzy controller (6) with a reliable guaranteed cost
can be completed in three steps. Firstly, compute a
constant number € and a symmetric matrix R by the
minimum technique min {trace(R (&); € 0}. Sec-

ondly, solve the LMIs (12) (18) (19) and obtain a

feasible solution Z€ R""", [ESHS T Gi=1, 2
-5 1), elc. Finally, obtain a reliable fuzzy controller

(6) with gain matrices Fi= QiZﬁ1 (G=1,2, =5 r),
and a reliable guaranteed cost J(x(0)).

If there exists a feasible solution of the LMIs
(12) (17) (18), then there exist many feasible solu-
tions of them. Hence, one can decrease the conser-
vatism of such reliable guaranteed cost by choosing an
appropriate feasible solution of the LMIs (12) (17)
(18). This idea can be realized by the minimum pro-
cedure of positive constant number € subject to

x"(0)Z 'x(0)> 0, which can be rewritten as
-0 X"
ISR Y 19
Consequently, we propose the following linear convex
optimal method
min{J(P) = 0. Z> 0, 0> 0},
Subject to: LMIs (12), (17), (18), and (19),
Q0)

and denote the reliable guaranteed cost corresponding

to the optimal solution to (20) by J T (x(0)).

3 Design of reliable fuzzy controller with do-
main guaranteed cost

In general, the initial state for fuzzy systems (1)
is usually unknown. However, in view of practical
situation of systems (1), the domain that the initial
state belongs to is always determined. Hence, we as-
sume that the initial state x (0) belongs to a bounded

closed domain € in this section, which is called the ini-
tial state domain. Define J(D=max{x' (0)Z 'x (0.
x(0) € Q} as a reliable domain guaranteed cost
(RDGC) with respect to (w.r.t.) Qforfuzzy sys

tems (1), where Z € R is a feasible solution for
LMIs (12) (17) (18).

3.1 Design of reliable fuzzy controller and reliable
domain guaranteed cost w.r.t.

Considering the case that the initial state domain
of fuzzy systems is a known polygon domain, i.e.
O = cof xo1s X02: s Xos)» Q2D
it is easy to see that

0= ;pixol‘; :21 pi=1 pi€[0.1],

i: 19 2, tte % .

Let Ql—{p = (p1s p2s n ps): Zpi =1
i=1

Pie[()a 1] ’ l:L 29 Sty %7
then we have

max{Jo = x (0)Px(0):x () € Q)

= max{[Zpion TP[Zp,-on :p € 91}
i—1 i—1

By Lemma 1, we can derive that

max{[i;prJ TP[i;p[on :p € Ql}

< max{ E )pzx()TiPin:p S Q}
i—1
<

T
max { x0iPXo; } -

=S

Since xo0: € &, (i=1, 2,

T
1rg;a\\xé{ Xo:PX0i} .

-+ ) hold, then J ()=

Theorem 2. Given fuzzy systems (1) with initial
state domain {4 and quadratic cost function (9). If
there exists a feasible solution to matrix inequalities
(12) (17) (18) (a symmetric positive definite matrix

X Xn
ZER" n, matrices QiGRm (i=12,

Y;< R"" (i, j= 1, 2, =+, ), and positive real
where Y;; = Yij
(i#j)), then the controller (6) with gain matrices
F=QP (P=2Z ") (i=1,2 - r)is a reliable
fuzzy controller with domain guaranteed cost J (£})
for fuzzy systems (1), and a RDGC is J () =

T
max { xoiPxoi} .

sy 1)y

numbers & (i =1, 2, -4 7),

Remark 1. The conservatism of RDGC for fuzzy
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systems (1) can be deceased by choosing an appropri-

ate feasible solution to LM1Is (12) (17) (18). The
minimum problem of J ({h)= 1@@55{ xgiPin} can be

solved by the minimization of the positive number Y
subject to x(l),-PXOi<V (=12, = 5). xol,-Px()i<7
(i=1,2, =+ s) is equivalent to

T

|: 0j<09 (l: 1929 "'9S). (22)

Xoi T
By the above analysis, we propose an optimal problem
mi¥>0: J(Y) =7,

70
Subject to: LMTIs (12), (17), (18), (22).
23)

Solving the optimal problem (23), we can ob-
tain the RDGC with least conservative for fuzzy sys-

tems (1), and denote it by J = ().

3.2 Design of reliable fuzzy controller with reliable
domain guaranteed cost w.r. t. b

Consider that the initial state domain of fuzzy
systems (1) is a known ellipsoid domain, i.e.

Q= {x:x'Rx <1 x € R", R> 0}, Qb
let Qo={x:x"Px<<0, >0, P=Z '}, itiseasy to
derive

J ()= max{Jo= x'Px:x € )
= min{ 0; 0> 0, Q C Q)
= min{ 0: 0> 0, P<< CR). 25)

Theorem 3. Given fuzzy systems (1) with initial
state domain (b and quadratic cost function (9). If
there exists a feasible solution to matrix inequalities
(12) (17) (18) (a symmetric positive definite matrix
ZER" ", matrices Qi € R™ " (= L2 1)

nXn
Y;€R (is j=1, 2, -5 1), and positive real
numbers & (i=1,2, -5 r), where ¥;;= Y;; (i #
j ), then the controller (6) with gain matrices Fi=
OP (P=2 ') (i=1,2, - r)is a reliable fuzzy
controller with RDGC J(£}) for fuzzy systems (1),
and a RDGC is J({h)=min{ 0. >0, P<<CPR)}.

The inequality P<< CR is equivalent to (26). We
propose a linear convex optimal problem (27), which
can efficiently decrease the conservatism of J ({b).
By solving the optimal problem, we can obtain the

RDGC with least conservatism, and denote it by

J (D).

[_IZ _IPR] <. 26)

Subject to: LMIs (12), (17), (18), (26).
Q7

{ min : J(0)= P,
Z>0, >0

4 Simulations

Considering the Rossler system with actuator
failure
x1(t)=—x2(t)— x3(1),
x2(t) = x1(¢t)+ ax2 (1),

x3(t) = bx1(0) — (e— x1 N xs () + u' (1),

(28)
where a=0.34, 5=0.4, and c=4.5, u' (¢) is the
output of failure actuator, and also the actual input
for the systems (28), the parameters in the actuator
failure model (2) are @=0.9 and d=0. 1, and the
weighted matrices in the cost function (9) are Ri=
diag{0.5, 1, 0. 8}, R2=1. When u' (¢) =0, the
state trajectory of system (28) exhibits the chaotic
behavior. Supposing that x1(7) €[ ¢c—d, ctd] and
d=10, the following fuzzy systems (29) can exactly
represent the nonlinear systems (28),

Rule 1: If x;(#) is My, then
x ()= Aix()+ Bu" (¢)
Rule 2: If x1(#) is M>, then
x ()= Aox(O+ B (). 29

Here, x (£)=[ x1(t) x2(t), x3()]", and some
related matrices and the membership functions are

0 —1 - 0 —1 —1
A= |1 a of, A1= |1 a o,
0
B=0,
— x1(1)
hl(t)ZMl(xl(t)):% 1_'_%’
h2(l>:M2(xl(t))=% lf%ﬂf)

Considering the three cases about initial state of sys-
tem (29): a known initial state x(0)= (1, — 1, — D',
the initial state domains & = co{(l, — 1, — 1),
(L L—D" (1L 1, D"}, and &= {x: xRx<1,

xER", R=0.33/3), and by the three design
methods ((20), (23) and (27)), we can obtain
three kinds of reliable guaranteed costs for fuzzy sys-
tem (29) (see Table 1). By the optimization tech-
nique (20), we obtain the reliable fuzzy controller
(6) with gain matrices (30) for fuzzy system (29).
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F1=20.7421 4.1770
F,=20.6449 4.1575

—35.2322),

—34.9472). G0

Table 1. Reliable guaranteed costs with respect to different kinds of
initial state domain
Initial state x (0 Q, Q,
Guaranteed J “(x(0)) J Q) J Q)
cost =297.3287 = 526. 4123 = 626. 8368

When an actuator failure model (2) is chosen as
u ()=0.9u(t)+0. 1u(sinCu(£)), the state
trajectory of the Rossler system (28) with the above

reliable fuzzy controller is shown in Fig. 1. It is easy
to see that the state trajectory is guided quickly to ori-

gin.

For the initial state domain €; and four kinds of
actuator failures, we can obtain domain reliable guar-
anteed costs and gain matrix norms of the fuzzy con-
trollers of the systems (29) (see Table 2). It is easy
tosee that the DRGCs and the controller’ s sizes all
gradually increase with the increment of the degree of
the actuator failures (2).

0.5 1.0
0.5
) 0 -
= 2 N &
—0.5}
3 05}
o4l - i A - A ;
%10 15 20 0% 1 15 2 o310 17 2
1(s) 1(s) (s
Fig. 1. State trajectories of the closed-loop Rossler system.
Table 2. Guaranteed costs and control gain norms with respect to different kinds of actuator failures
Failure parameters (a, )= (1, 0. D (1,0.2) (0.9,0. D 0.9,0.2)
Guaranteed cost J (Qp= 418. 5052 527. 1252 526.4123 683.9373

CILE L TR, D= (39. 8498, 39. 8401)

Gain nom

(44. 8890, 44.7965) (44.7351, 44.7623) (51. 0822, 51. 1025)
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